Comparison #
This file provides basic results about orderings and comparison in linear orders.
Definitions #
CmpLE
: AnOrdering
from≤
.Ordering.Compares
: Turns anOrdering
into<
and=
propositions.linearOrderOfCompares
: Constructs aLinearOrder
instance from the fact that any two elements that are not one strictly less than the other either way are equal.
Like cmp
, but uses a ≤
on the type instead of <
. Given two elements x
and y
, returns a
three-way comparison result Ordering
.
Equations
- cmpLE x y = if x ≤ y then if y ≤ x then Ordering.eq else Ordering.lt else Ordering.gt
Instances For
theorem
cmpLE_eq_cmp
{α : Type u_3}
[Preorder α]
[IsTotal α fun (x1 x2 : α) => x1 ≤ x2]
[DecidableRel fun (x1 x2 : α) => x1 ≤ x2]
[DecidableRel fun (x1 x2 : α) => x1 < x2]
(x y : α)
:
theorem
Ordering.Compares.swap
{α : Type u_1}
[LT α]
{a b : α}
{o : Ordering}
:
o.Compares b a → o.swap.Compares a b
Alias of the reverse direction of Ordering.compares_swap
.
theorem
Ordering.Compares.of_swap
{α : Type u_1}
[LT α]
{a b : α}
{o : Ordering}
:
o.swap.Compares a b → o.Compares b a
Alias of the forward direction of Ordering.compares_swap
.
theorem
Ordering.Compares.eq_lt
{α : Type u_1}
[Preorder α]
{o : Ordering}
{a b : α}
:
o.Compares a b → (o = Ordering.lt ↔ a < b)
theorem
Ordering.Compares.ne_lt
{α : Type u_1}
[Preorder α]
{o : Ordering}
{a b : α}
:
o.Compares a b → (o ≠ Ordering.lt ↔ b ≤ a)
theorem
Ordering.Compares.eq_eq
{α : Type u_1}
[Preorder α]
{o : Ordering}
{a b : α}
:
o.Compares a b → (o = Ordering.eq ↔ a = b)
theorem
Ordering.Compares.eq_gt
{α : Type u_1}
[Preorder α]
{o : Ordering}
{a b : α}
(h : o.Compares a b)
:
o = Ordering.gt ↔ b < a
theorem
Ordering.Compares.ne_gt
{α : Type u_1}
[Preorder α]
{o : Ordering}
{a b : α}
(h : o.Compares a b)
:
o ≠ Ordering.gt ↔ a ≤ b
theorem
Ordering.compares_iff_of_compares_impl
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[Preorder β]
{a b : α}
{a' b' : β}
(h : ∀ {o : Ordering}, o.Compares a b → o.Compares a' b')
(o : Ordering)
:
o.Compares a b ↔ o.Compares a' b'
@[deprecated Ordering.swap_then]
@[deprecated Ordering.then_eq_lt]
theorem
Ordering.orElse_eq_lt
(o₁ o₂ : Ordering)
:
o₁.orElse o₂ = Ordering.lt ↔ o₁ = Ordering.lt ∨ o₁ = Ordering.eq ∧ o₂ = Ordering.lt
theorem
Ordering.Compares.cmp_eq
{α : Type u_1}
[LinearOrder α]
{a b : α}
{o : Ordering}
(h : o.Compares a b)
:
@[simp]
@[simp]
@[simp]
@[simp]
def
linearOrderOfCompares
{α : Type u_1}
[Preorder α]
(cmp : α → α → Ordering)
(h : ∀ (a b : α), (cmp a b).Compares a b)
:
Generate a linear order structure from a preorder and cmp
function.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
@[simp]
theorem
cmp_eq_cmp_symm
{α : Type u_1}
[LinearOrder α]
{x y : α}
{β : Type u_3}
[LinearOrder β]
{x' y' : β}
:
theorem
lt_iff_lt_of_cmp_eq_cmp
{α : Type u_1}
[LinearOrder α]
{x y : α}
{β : Type u_3}
[LinearOrder β]
{x' y' : β}
(h : cmp x y = cmp x' y')
:
theorem
le_iff_le_of_cmp_eq_cmp
{α : Type u_1}
[LinearOrder α]
{x y : α}
{β : Type u_3}
[LinearOrder β]
{x' y' : β}
(h : cmp x y = cmp x' y')
:
theorem
eq_iff_eq_of_cmp_eq_cmp
{α : Type u_1}
[LinearOrder α]
{x y : α}
{β : Type u_3}
[LinearOrder β]
{x' y' : β}
(h : cmp x y = cmp x' y')
: