Casts of rational numbers into characteristic zero fields (or division rings). #
theorem
Rat.cast_injective
{α : Type u_3}
[DivisionRing α]
[CharZero α]
:
Function.Injective Rat.cast
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
Coercion ℚ → α
as a RingHom
.
Equations
- Rat.castHom α = { toFun := Rat.cast, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
@[deprecated Rat.coe_castHom]
Alias of Rat.coe_castHom
.
@[simp]
@[simp]
@[simp]
theorem
Rat.cast_mk
{α : Type u_3}
[DivisionRing α]
[CharZero α]
(a b : ℤ)
:
↑(Rat.divInt a b) = ↑a / ↑b
theorem
NNRat.cast_injective
{α : Type u_3}
[DivisionSemiring α]
[CharZero α]
:
Function.Injective NNRat.cast
@[simp]
@[simp]
@[simp]
@[simp]
Coercion ℚ≥0 → α
as a RingHom
.
Equations
- NNRat.castHom α = { toFun := NNRat.cast, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
NNRat.coe_castHom
{α : Type u_3}
[DivisionSemiring α]
[CharZero α]
:
⇑(NNRat.castHom α) = NNRat.cast
@[simp]
@[simp]
@[simp]
@[simp]
theorem
NNRat.cast_divNat
{α : Type u_3}
[DivisionSemiring α]
[CharZero α]
(a b : ℕ)
:
↑(NNRat.divNat a b) = ↑a / ↑b