Documentation

Mathlib.Data.Multiset.Bind

Bind operation for multisets #

This file defines a few basic operations on Multiset, notably the monadic bind.

Main declarations #

Join #

def Multiset.join {α : Type u_1} :

join S, where S is a multiset of multisets, is the lift of the list join operation, that is, the union of all the sets. join {{1, 2}, {1, 2}, {0, 1}} = {0, 1, 1, 1, 2, 2}

Equations
  • Multiset.join = Multiset.sum
Instances For
    theorem Multiset.coe_join {α : Type u_1} (L : List (List α)) :
    (↑(List.map Multiset.ofList L)).join = L.flatten
    @[simp]
    theorem Multiset.join_zero {α : Type u_1} :
    @[simp]
    theorem Multiset.join_cons {α : Type u_1} (s : Multiset α) (S : Multiset (Multiset α)) :
    (s ::ₘ S).join = s + S.join
    @[simp]
    theorem Multiset.join_add {α : Type u_1} (S T : Multiset (Multiset α)) :
    (S + T).join = S.join + T.join
    @[simp]
    theorem Multiset.singleton_join {α : Type u_1} (a : Multiset α) :
    {a}.join = a
    @[simp]
    theorem Multiset.mem_join {α : Type u_1} {a : α} {S : Multiset (Multiset α)} :
    a S.join sS, a s
    @[simp]
    theorem Multiset.card_join {α : Type u_1} (S : Multiset (Multiset α)) :
    Multiset.card S.join = (Multiset.map (⇑Multiset.card) S).sum
    @[simp]
    theorem Multiset.map_join {α : Type u_1} {β : Type v} (f : αβ) (S : Multiset (Multiset α)) :
    Multiset.map f S.join = (Multiset.map (Multiset.map f) S).join
    @[simp]
    theorem Multiset.prod_join {α : Type u_1} [CommMonoid α] {S : Multiset (Multiset α)} :
    S.join.prod = (Multiset.map Multiset.prod S).prod
    @[simp]
    theorem Multiset.sum_join {α : Type u_1} [AddCommMonoid α] {S : Multiset (Multiset α)} :
    S.join.sum = (Multiset.map Multiset.sum S).sum
    theorem Multiset.rel_join {α : Type u_1} {β : Type v} {r : αβProp} {s : Multiset (Multiset α)} {t : Multiset (Multiset β)} (h : Multiset.Rel (Multiset.Rel r) s t) :
    Multiset.Rel r s.join t.join

    Bind #

    def Multiset.bind {α : Type u_1} {β : Type v} (s : Multiset α) (f : αMultiset β) :

    s.bind f is the monad bind operation, defined as (s.map f).join. It is the union of f a as a ranges over s.

    Equations
    Instances For
      @[simp]
      theorem Multiset.coe_bind {α : Type u_1} {β : Type v} (l : List α) (f : αList β) :
      ((↑l).bind fun (a : α) => (f a)) = (l.flatMap f)
      @[simp]
      theorem Multiset.zero_bind {α : Type u_1} {β : Type v} (f : αMultiset β) :
      @[simp]
      theorem Multiset.cons_bind {α : Type u_1} {β : Type v} (a : α) (s : Multiset α) (f : αMultiset β) :
      (a ::ₘ s).bind f = f a + s.bind f
      @[simp]
      theorem Multiset.singleton_bind {α : Type u_1} {β : Type v} (a : α) (f : αMultiset β) :
      {a}.bind f = f a
      @[simp]
      theorem Multiset.add_bind {α : Type u_1} {β : Type v} (s t : Multiset α) (f : αMultiset β) :
      (s + t).bind f = s.bind f + t.bind f
      @[simp]
      theorem Multiset.bind_zero {α : Type u_1} {β : Type v} (s : Multiset α) :
      (s.bind fun (x : α) => 0) = 0
      @[simp]
      theorem Multiset.bind_add {α : Type u_1} {β : Type v} (s : Multiset α) (f g : αMultiset β) :
      (s.bind fun (a : α) => f a + g a) = s.bind f + s.bind g
      @[simp]
      theorem Multiset.bind_cons {α : Type u_1} {β : Type v} (s : Multiset α) (f : αβ) (g : αMultiset β) :
      (s.bind fun (a : α) => f a ::ₘ g a) = Multiset.map f s + s.bind g
      @[simp]
      theorem Multiset.bind_singleton {α : Type u_1} {β : Type v} (s : Multiset α) (f : αβ) :
      (s.bind fun (x : α) => {f x}) = Multiset.map f s
      @[simp]
      theorem Multiset.mem_bind {α : Type u_1} {β : Type v} {b : β} {s : Multiset α} {f : αMultiset β} :
      b s.bind f as, b f a
      @[simp]
      theorem Multiset.card_bind {α : Type u_1} {β : Type v} (s : Multiset α) (f : αMultiset β) :
      Multiset.card (s.bind f) = (Multiset.map (Multiset.card f) s).sum
      theorem Multiset.bind_congr {α : Type u_1} {β : Type v} {f g : αMultiset β} {m : Multiset α} :
      (∀ am, f a = g a)m.bind f = m.bind g
      theorem Multiset.bind_hcongr {α : Type u_1} {β β' : Type v} {m : Multiset α} {f : αMultiset β} {f' : αMultiset β'} (h : β = β') (hf : am, HEq (f a) (f' a)) :
      HEq (m.bind f) (m.bind f')
      theorem Multiset.map_bind {α : Type u_1} {β : Type v} {γ : Type u_2} (m : Multiset α) (n : αMultiset β) (f : βγ) :
      Multiset.map f (m.bind n) = m.bind fun (a : α) => Multiset.map f (n a)
      theorem Multiset.bind_map {α : Type u_1} {β : Type v} {γ : Type u_2} (m : Multiset α) (n : βMultiset γ) (f : αβ) :
      (Multiset.map f m).bind n = m.bind fun (a : α) => n (f a)
      theorem Multiset.bind_assoc {α : Type u_1} {β : Type v} {γ : Type u_2} {s : Multiset α} {f : αMultiset β} {g : βMultiset γ} :
      (s.bind f).bind g = s.bind fun (a : α) => (f a).bind g
      theorem Multiset.bind_bind {α : Type u_1} {β : Type v} {γ : Type u_2} (m : Multiset α) (n : Multiset β) {f : αβMultiset γ} :
      (m.bind fun (a : α) => n.bind fun (b : β) => f a b) = n.bind fun (b : β) => m.bind fun (a : α) => f a b
      theorem Multiset.bind_map_comm {α : Type u_1} {β : Type v} {γ : Type u_2} (m : Multiset α) (n : Multiset β) {f : αβγ} :
      (m.bind fun (a : α) => Multiset.map (fun (b : β) => f a b) n) = n.bind fun (b : β) => Multiset.map (fun (a : α) => f a b) m
      @[simp]
      theorem Multiset.prod_bind {α : Type u_1} {β : Type v} [CommMonoid β] (s : Multiset α) (t : αMultiset β) :
      (s.bind t).prod = (Multiset.map (fun (a : α) => (t a).prod) s).prod
      @[simp]
      theorem Multiset.sum_bind {α : Type u_1} {β : Type v} [AddCommMonoid β] (s : Multiset α) (t : αMultiset β) :
      (s.bind t).sum = (Multiset.map (fun (a : α) => (t a).sum) s).sum
      theorem Multiset.rel_bind {α : Type u_1} {β : Type v} {γ : Type u_2} {δ : Type u_3} {r : αβProp} {p : γδProp} {s : Multiset α} {t : Multiset β} {f : αMultiset γ} {g : βMultiset δ} (h : (r Multiset.Rel p) f g) (hst : Multiset.Rel r s t) :
      Multiset.Rel p (s.bind f) (t.bind g)
      theorem Multiset.count_sum {α : Type u_1} {β : Type v} [DecidableEq α] {m : Multiset β} {f : βMultiset α} {a : α} :
      Multiset.count a (Multiset.map f m).sum = (Multiset.map (fun (b : β) => Multiset.count a (f b)) m).sum
      theorem Multiset.count_bind {α : Type u_1} {β : Type v} [DecidableEq α] {m : Multiset β} {f : βMultiset α} {a : α} :
      Multiset.count a (m.bind f) = (Multiset.map (fun (b : β) => Multiset.count a (f b)) m).sum
      theorem Multiset.le_bind {α : Type u_4} {β : Type u_5} {f : αMultiset β} (S : Multiset α) {x : α} (hx : x S) :
      f x S.bind f
      theorem Multiset.attach_bind_coe {α : Type u_1} {β : Type v} (s : Multiset α) (f : αMultiset β) :
      (s.attach.bind fun (i : { x : α // x s }) => f i) = s.bind f
      @[simp]
      theorem Multiset.nodup_bind {α : Type u_1} {β : Type v} {s : Multiset α} {f : αMultiset β} :
      (s.bind f).Nodup (∀ as, (f a).Nodup) Multiset.Pairwise (fun (a b : α) => Disjoint (f a) (f b)) s
      @[simp]
      theorem Multiset.dedup_bind_dedup {α : Type u_1} {β : Type v} [DecidableEq α] [DecidableEq β] (s : Multiset α) (f : αMultiset β) :
      (s.dedup.bind f).dedup = (s.bind f).dedup

      Product of two multisets #

      def Multiset.product {α : Type u_1} {β : Type v} (s : Multiset α) (t : Multiset β) :
      Multiset (α × β)

      The multiplicity of (a, b) in s ×ˢ t is the product of the multiplicity of a in s and b in t.

      Equations
      Instances For
        instance Multiset.instSProd {α : Type u_1} {β : Type v} :
        SProd (Multiset α) (Multiset β) (Multiset (α × β))
        Equations
        • Multiset.instSProd = { sprod := Multiset.product }
        @[simp]
        theorem Multiset.coe_product {α : Type u_1} {β : Type v} (l₁ : List α) (l₂ : List β) :
        l₁ ×ˢ l₂ = (l₁ ×ˢ l₂)
        @[simp]
        theorem Multiset.zero_product {α : Type u_1} {β : Type v} (t : Multiset β) :
        0 ×ˢ t = 0
        @[simp]
        theorem Multiset.cons_product {α : Type u_1} {β : Type v} (a : α) (s : Multiset α) (t : Multiset β) :
        (a ::ₘ s) ×ˢ t = Multiset.map (Prod.mk a) t + s ×ˢ t
        @[simp]
        theorem Multiset.product_zero {α : Type u_1} {β : Type v} (s : Multiset α) :
        s ×ˢ 0 = 0
        @[simp]
        theorem Multiset.product_cons {α : Type u_1} {β : Type v} (b : β) (s : Multiset α) (t : Multiset β) :
        s ×ˢ (b ::ₘ t) = Multiset.map (fun (a : α) => (a, b)) s + s ×ˢ t
        @[simp]
        theorem Multiset.product_singleton {α : Type u_1} {β : Type v} (a : α) (b : β) :
        {a} ×ˢ {b} = {(a, b)}
        @[simp]
        theorem Multiset.add_product {α : Type u_1} {β : Type v} (s t : Multiset α) (u : Multiset β) :
        (s + t) ×ˢ u = s ×ˢ u + t ×ˢ u
        @[simp]
        theorem Multiset.product_add {α : Type u_1} {β : Type v} (s : Multiset α) (t u : Multiset β) :
        s ×ˢ (t + u) = s ×ˢ t + s ×ˢ u
        @[simp]
        theorem Multiset.card_product {α : Type u_1} {β : Type v} (s : Multiset α) (t : Multiset β) :
        Multiset.card (s ×ˢ t) = Multiset.card s * Multiset.card t
        @[simp]
        theorem Multiset.mem_product {α : Type u_1} {β : Type v} {s : Multiset α} {t : Multiset β} {p : α × β} :
        p s.product t p.1 s p.2 t
        theorem Multiset.Nodup.product {α : Type u_1} {β : Type v} {s : Multiset α} {t : Multiset β} :
        s.Nodupt.Nodup(s ×ˢ t).Nodup

        Disjoint sum of multisets #

        def Multiset.sigma {α : Type u_1} {σ : αType u_4} (s : Multiset α) (t : (a : α) → Multiset (σ a)) :
        Multiset ((a : α) × σ a)

        Multiset.sigma s t is the dependent version of Multiset.product. It is the sum of (a, b) as a ranges over s and b ranges over t a.

        Equations
        Instances For
          @[simp]
          theorem Multiset.coe_sigma {α : Type u_1} {σ : αType u_4} (l₁ : List α) (l₂ : (a : α) → List (σ a)) :
          ((↑l₁).sigma fun (a : α) => (l₂ a)) = (l₁.sigma l₂)
          @[simp]
          theorem Multiset.zero_sigma {α : Type u_1} {σ : αType u_4} (t : (a : α) → Multiset (σ a)) :
          @[simp]
          theorem Multiset.cons_sigma {α : Type u_1} {σ : αType u_4} (a : α) (s : Multiset α) (t : (a : α) → Multiset (σ a)) :
          (a ::ₘ s).sigma t = Multiset.map (Sigma.mk a) (t a) + s.sigma t
          @[simp]
          theorem Multiset.sigma_singleton {α : Type u_1} {β : Type v} (a : α) (b : αβ) :
          ({a}.sigma fun (a : α) => {b a}) = {a, b a}
          @[simp]
          theorem Multiset.add_sigma {α : Type u_1} {σ : αType u_4} (s t : Multiset α) (u : (a : α) → Multiset (σ a)) :
          (s + t).sigma u = s.sigma u + t.sigma u
          @[simp]
          theorem Multiset.sigma_add {α : Type u_1} {σ : αType u_4} (s : Multiset α) (t u : (a : α) → Multiset (σ a)) :
          (s.sigma fun (a : α) => t a + u a) = s.sigma t + s.sigma u
          @[simp]
          theorem Multiset.card_sigma {α : Type u_1} {σ : αType u_4} (s : Multiset α) (t : (a : α) → Multiset (σ a)) :
          Multiset.card (s.sigma t) = (Multiset.map (fun (a : α) => Multiset.card (t a)) s).sum
          @[simp]
          theorem Multiset.mem_sigma {α : Type u_1} {σ : αType u_4} {s : Multiset α} {t : (a : α) → Multiset (σ a)} {p : (a : α) × σ a} :
          p s.sigma t p.fst s p.snd t p.fst
          theorem Multiset.Nodup.sigma {α : Type u_1} {s : Multiset α} {σ : αType u_5} {t : (a : α) → Multiset (σ a)} :
          s.Nodup(∀ (a : α), (t a).Nodup)(s.sigma t).Nodup