Definitions and properties of coprime
#
Equations
- m.instDecidableCoprime n = inferInstanceAs (Decidable (m.gcd n = 1))
theorem
Nat.Coprime.mul_right
{k m n : Nat}
(H1 : k.Coprime m)
(H2 : k.Coprime n)
:
k.Coprime (m * n)
theorem
Nat.Coprime.coprime_div_left
{m n a : Nat}
(cmn : m.Coprime n)
(dvd : a ∣ m)
:
(m / a).Coprime n
theorem
Nat.Coprime.coprime_div_right
{m n a : Nat}
(cmn : m.Coprime n)
(dvd : a ∣ n)
:
m.Coprime (n / a)
theorem
Nat.Coprime.gcd_both
{m n : Nat}
(k l : Nat)
(hmn : m.Coprime n)
:
(k.gcd m).Coprime (l.gcd n)