Sidon

Tomas Ortega

November 28, 2024

Chapter 1

Basic Sidon sets results

Definition 1 (Sidon set). A set $S \subseteq M$, where M is an additive commutative monoid, is called a Sidon set if for all $a, b, c, d \in S$, then $a + b = c + d \implies \{a, b\} = \{c, d\}$, that is, there are no repeated sums.

Theorem 2. The empty set is a Sidon set.

Theorem 3. A singleton set is a Sidon set.

Theorem 4. If S is a Sidon set and $T \subseteq S$, then T is a Sidon set.

Theorem 5. If S is a Sidon set in a finite additive commutative group M, then $|S| \cdot (|S|-1) \leq |M|$.

Proof. Let $S = \{a_1, \dots, a_n\}$. Consider the differences $a_i - a_j$ for $i \neq j$. Since S is Sidon, theses differences are unique, and there are at most |M| of them. By injectivity, the proof follows. \Box